
Pytorch Wavelets Documentation
Release 0.1.1

Fergal Cotter

Mar 26, 2019

Contents:

1 Introduction 1
1.1 Installation . 4
1.2 Notes . 4
1.3 Provenance . 6

2 DWT in Pytorch Wavelets 7
2.1 Differences to PyWavelets . 7
2.2 Example . 8
2.3 Other Notes . 8

3 DTCWT in Pytorch Wavelets 9
3.1 Notes . 9
3.2 Example . 10
3.3 Advanced Options . 11

4 Notes on Speed 13

5 API Guide 15
5.1 Decimated WT . 15
5.2 Dual Tree Complex WT . 16

6 Indices and tables 19

Bibliography 21

Python Module Index 23

i

ii

CHAPTER 1

Introduction

This package provides support for computing the 2D discrete wavelet and the 2d dual-tree complex wavelet transforms,
their inverses, and passing gradients through both using pytorch.

The implementation is designed to be used with batches of multichannel images. We use the standard pytorch imple-
mentation of having ‘NCHW’ data format.

This repo originally was only for the use of the DTCWT, but I have added some DWT support. This is still in
development, and has the following known issues:

• Uses reflection padding instead of symmetric padding for the DWT

• Doesn’t compute the DWT separably, instead uses the full N x N kernel.

Fig. 1: The subband implementation of the discrete wavelet transform

1

https://travis-ci.org/fbcotter/pytorch_wavelets

Pytorch Wavelets Documentation, Release 0.1.1

Fig. 2: The equivalent point spread functions of the dwt (a) and the areas of the frequency plane each filter selects (b).
Image taken from [SBK05].

2 Chapter 1. Introduction

Pytorch Wavelets Documentation, Release 0.1.1

Fig. 3: The subband implementation of the dual tree complex wavelet transform

Fig. 4: The equivalent point spread functions of the dtcwt (a) and the areas of the frequency plane each filter selects
(b). Image taken from [SBK05].

3

Pytorch Wavelets Documentation, Release 0.1.1

1.1 Installation

The easiest way to install pytorch_wavelets is to clone the repo and pip install it. Later versions will be released
on PyPi but the docs need to updated first:

$ git clone https://github.com/fbcotter/pytorch_wavelets
$ cd pytorch_wavelets
$ pip install .

(Although the develop command may be more useful if you intend to perform any significant modification to the
library.) A test suite is provided so that you may verify the code works on your system:

$ pip install -r tests/requirements.txt
$ pytest tests/

1.2 Notes

See the other docs

1.2.1 Floating Point Type

By default, the filters will use 32-bit precision, as is the common case with gpu operations. You can change to 64-bit
by calling torch.set_default_dtype(torch.float64) before the transforms are constructed.

1.2.2 Running on the GPU

This should come as no surprise to pytorch users. The DWT and DTCWT transforms support cuda calling:

import torch
from pytorch_wavelets import DTCWTForward, DTCWTInverse
xfm = DTCWTForward(J=3, biort='near_sym_b', qshift='qshift_b').cuda()
X = torch.randn(10,5,64,64).cuda()
Yl, Yh = xfm(X)
ifm = DTCWTInverse(J=3, biort='near_sym_b', qshift='qshift_b').cuda()
Y = ifm((Yl, Yh))

The automated tests cannot test the gpu functionality, but do check cpu running. To test whether the repo is working
on your gpu, you can download the repo, ensure you have pytorch with cuda enabled (the tests will check to see if
torch.cuda.is_available() returns true), and run:

pip install -r tests/requirements.txt
pytest tests/

From the base of the repo.

1.2.3 Backpropagation

It is possible to pass gradients through the forward and backward transforms. All you need to do is ensure that the
input to each has the required_grad attribute set to true.

4 Chapter 1. Introduction

Pytorch Wavelets Documentation, Release 0.1.1

1.2.4 Speed Tests

We compare doing the dtcwt with the python package and doing the dwt with PyWavelets to doing both in py-
torch_wavelets, using a GTX1080. The numpy methods were run on a 14 core Xeon Phi machine using intel’s parallel
python. For the dtwcwt we use the near_sym_a filters for the first scale and the qshift_a filters for subsequent scales.
For the dwt we use the db4 filters.

For a fixed input size, but varying the number of scales (from 1 to 4) we have the following speeds (averaged over 5
runs):

For an input size with height and width 512 by 512, we also vary the batch size for a 3 scale transform. The resulting
speeds were:

1.2. Notes 5

Pytorch Wavelets Documentation, Release 0.1.1

1.3 Provenance

Based on the Dual-Tree Complex Wavelet Transform Pack for MATLAB by Nick Kingsbury, Cambridge University.
The original README can be found in ORIGINAL_README.txt. This file outlines the conditions of use of the
original MATLAB toolbox.

6 Chapter 1. Introduction

CHAPTER 2

DWT in Pytorch Wavelets

While pytorch_wavelets was initially built as a repo to do the dual tree wavelet transform efficiently in pytorch, I have
also built a thin wrapper over PyWavelets, allowing the calculation of the 2D-DWT in pytorch on a GPU on a batch of
images.

Older versions did the DWT non separably. As of v1.0.0 we now have code to do it separably. The old non-separable
code is still there and is surprisingly sometimes faster. You can test the two out to see which is better for you by
changing the separable flag in the DWT/IDWT constructor.

The DWT/IDWT now supports most of the padding schemes that PyWavelets uses. In particular:

• symmetric padding

• reflection padding

• zero padding

• periodization

You can see the source here. It is pretty minimal and should be clear what is going on.

In particular, the DWT and IWT classes initialize the filter banks as pytorch tensors (taking care to flip them as pytorch
uses cross-correlation not convolution). It then performs non-separable 2D convolution on the input, using strided
convolution to calculate the LL, LH, HL, and HH subbands. It also takes care of padding to match the PyWavelets
implementation.

2.1 Differences to PyWavelets

2.1.1 Inputs

The pytorch_wavelets DWT expects the standard pytorch image format of NCHW - i.e., a batch of N images, with C
channels, height H and width W. For a single RGB image, you would need to make it a torch tensor of size (1, 3,
H, W), or for a batch of 100 grayscale images, you would need to make it a tensor of size (100, 1, H, W).

7

_modules/pytorch_wavelets/dwt/transform2d.html#DWTForward

Pytorch Wavelets Documentation, Release 0.1.1

2.1.2 Returned Coefficients

We deviate slightly from PyWavelets with the format of the returned coefficients. In particular, we return a tuple of
(yl, yh) where yl is the LL band, and yh is a list. The first list entry yh[0] are the scale 1 bandpass coefficients
(finest resolution), and the last list entry yh[-1] are the coarsest bandpass coefficients. Note that this is the reverse of
the PyWavelets format (but fits with the dtcwt standard output). Each of the bands is a single stacked tensor of the LH
(horiz), HL (vertic), and HH (diag) coefficients for each scale (as opposed to PyWavelets style of returning as a tuple)
with the stack along the third dimension. As the input had 4 dimensions, this output has 5 dimensions, with shape (N,
C, 3, H, W). This is easily transformed into the PyWavelets style by unstacking the list elements in yh.

2.2 Example

import torch
from pytorch_wavelets import DWTForward, DWTInverse # (or import DWT, IDWT)
xfm = DWTForward(J=3, mode='zero', wave='db3') # Accepts all wave types available to
→˓PyWavelets
ifm = DWTInverse(mode='zero', wave='db3')
X = torch.randn(10,5,64,64)
Yl, Yh = xfm(X)
print(Yl.shape)
>>> torch.Size([10, 5, 12, 12])
print(Yh[0].shape)
>>> torch.Size([10, 5, 3, 34, 34])
print(Yh[1].shape)
>>> torch.Size([10, 5, 3, 19, 19])
print(Yh[2].shape)
>>> torch.Size([10, 5, 3, 12, 12])
Y = ifm((Yl, Yh))
import numpy as np
np.testing.assert_array_almost_equal(Y.cpu().numpy(), X.cpu().numpy())

2.3 Other Notes

2.3.1 GPU Calculations

As you would expect, you can move the transforms to the GPU by calling xfm.cuda() or ifm.cuda(), where
xfm, ifm are instances of pytorch_wavelets.DWTForward and pytorch_wavelets.DWTInverse.

8 Chapter 2. DWT in Pytorch Wavelets

CHAPTER 3

DTCWT in Pytorch Wavelets

Pytorch wavelets is a port of dtcwt_slim, which was my first attempt at doing the DTCWT quickly on a GPU. It has
since been cleaned up to run for pytorch and do the quickest forward and inverse transforms I can make, as well as
being able to pass gradients through the inputs.

For those unfamiliar with the DTCWT, it is a shift invariant wavelet transform that comes with limited redundancy.
Compared to the undecimated wavelet transform, which has 2𝐽 redundancy, the DTCWT only has 2𝑑 redundancy
(where d is the number of input dimensions - i.e. 4:1 redundancy for image transforms). Instead of producing 3 output
subbands like the DWT, it produces 6, which roughly represent 15, 45, 75, 105, 135 and 165 degree wavelets. On top
of this, the 6 subbands have real and imaginary outputs which are in quadrature with each other (similar to windowed
sine and cosine functions, or the gabor wavelet).

It is possible to calculate similar transforms (such as the morlet or gabor) using fourier transforms, but the DTCWT is
faster as it uses separable convolutions.

3.1 Notes

Because of the above mentioned properties of the DTCWT, the output is slightly different to the DWT. As mentioned,
it is 4:1 redundant in 2D, so we expect 4 times as many coefficients as from the decimated wavelet transform. These

9

https://github.com/fbcotter/dtcwt_slim

Pytorch Wavelets Documentation, Release 0.1.1

extra coefficients come from:

• 6 subband outputs instead of 3 with ial and imaginary coefficients instead of just real. For an 𝑁 ×𝑁 image, the
first level bandpass has 3𝑁2 instead of 3𝑁2/4 coefficients.

• The lowpass is always at double the resolution of what you’d expect it to be for the level in the wavelet tree. I.e.
for a 1 level transform, the lowapss output is still 𝑁 ×𝑁 . For a two level transform, it is 𝑁/2×𝑁/2 and so on.

3.2 Example

import torch
from pytorch_wavelets import DTCWTForward, DTCWTInverse
xfm = DTCWTForward(J=3, biort='near_sym_b', qshift='qshift_b')
X = torch.randn(10,5,64,64)
Yl, Yh = xfm(X)
print(Yl.shape)
>>> torch.Size([10, 5, 16, 16])
print(Yh[0].shape)
>>> torch.Size([10, 5, 6, 32, 32, 2])
print(Yh[1].shape)
>>> torch.Size([10, 5, 6, 16, 16, 2])
print(Yh[2].shape)
>>> torch.Size([10, 5, 6, 8, 8, 2])
ifm = DTCWTInverse(J=3, biort='near_sym_b', qshift='qshift_b')
Y = ifm((Yl, Yh))

Like with the DWT, Yh returned is a tuple. There are 2 extra dimensions - the first comes between the channel
dimension of the input and the row dimension. This is the 6 orientations of the DTCWT. The second is the final
dimension, which is the real an imaginary parts (complex numbers are not native to pytorch). I.e. to access the real
part of the 45 degree wavelet for the first subband, you would use Yh[0][:,:,1,:,:,0], and the imaginary part
of the 165 degree wavelet would be Yh[0][:,:,5,:,:,1].

The above images were created by doing a forward transform with an input of zeros (creates a pyramid with the correct
size bands), and then setting the centre spatial value to 1 for each of the orientations at the third scale. I.e.:

import numpy as np
import torch
from pytorch_wavelets import DTCWTForward, DTCWTInverse
xfm = DTCWTForward(J=3)
ifm = DTCWTInverse(J=3)
x = torch.zeros(1,1,64,64)
Create 12 outputs, one for the real and imaginary point spread functions
for each of the 6 orientations
out = np.zeros((12,64,64)
yl, yh = xfm(x)
for b in range(6):
for ri in range(2):
yh[2][0,0,b,4,4,ri] = 1
out[b*2 + ri] = ifm((yl, yh))
yh[2][0,0,b,4,4,ri] = 0

Can now plot the output

10 Chapter 3. DTCWT in Pytorch Wavelets

Pytorch Wavelets Documentation, Release 0.1.1

3.3 Advanced Options

There is a whole host of advanced options for calculating the DTCWT. The above example shows the use case that
will work most of the time. However, here are some more ways the DTCWT can be done:

3.3.1 Custom Biorthogonal and Qshift Filters

Rather than specifying the type of filter for the layer 1 (biort), and layer 2+ (qshift) transforms, you can provide the
filters directly. They should be given as a tuple of array-like objects. For the biorthogonal filters, this is a 2-tuple of
low and highpass filters. For the qshift filters, this will be a 4-tuple of low for tree a, low for tree b, high for tree a and
high for tree b filters.

E.g.:

from pytorch_wavelets import DTCWTForward
from pytorch_wavelets.dtcwt.coeffs import biort
The standard style
xfm1 = DTCWTForward(biort='near_sym_a', J=1)
Get our own filters, here we reverse the standard filters so they
still have the right properties, only changing the phase
h0o, _, h1o, _ = biort('near_sym_a')
xfm2 = DTCWTForward(biort=(h0o[::-1], h1o[::-1]), J=1)

Note that you must be careful when doing this, as the filters are designed to have the correct phase properties, so any
changes will likely result in a loss of the quarter shift and hence the shift invariant properties of the transform.

3.3.2 Skipping Highpasses

There is the option to not calculate the bandpass outputs at given scales. This can speed up the transform if you know
that there is very little useful content in some areas of the frequency space. To do this, you can give a list of booleans
to the skip_hps parameter (if it is a single boolean, that is then used for all the scales). The first value corresponds to
the first scale highpass outputs, and a value of true means do not calculate them.

E.g.:

from pytorch_wavelets import DTCWTForward
xfm = DTCWTForward(J=3, skip_hps=[True, False, False])
yl, yh = xfm(torch.randn(1, 1, 64, 64))
print(yh[0].shape)
>>> torch.Size([0])
print(yh[1].shape)
>>> torch.Size([1, 1, 6, 16, 16, 2])

Naturally, the inverse transform happily accepts tensors with 0 shape (or even None’s) and sets that level to be all
zeros.

3.3.3 Changing the output shape

By default the highpass outputs have an extra 2 dimensions, one at the end for complex values, and one after the channel
dimension, for the 6 orientations. E.g. an input of shape of (𝑁,𝐶𝑖𝑛, 𝐻𝑖𝑛,𝑊𝑖𝑛) will have bandpass coefficients with
shapes 𝑙𝑖𝑠𝑡(𝑁,𝐶𝑖𝑛, 6, 𝐻

′′
𝑖𝑛,𝑊

′′
𝑖𝑛, 2), (we’ve put dashes next to the height and width as they will change with scale).

You can choose where the orientations and real and imaginary dimensions go with the options o_dim and ri_dim,
which are by default 2 and -1.

3.3. Advanced Options 11

Pytorch Wavelets Documentation, Release 0.1.1

3.3.4 Including all the lowpasses

In case you want to get all the intermediate lowpasses, you can with the include_scale parameter. This works a bit
like the skip_hps where you can provide a single boolean to apply it to all the scales, or a list of booleans to fine tune
which lowpasses you want.

If any of the value in include_scale is true, then the transform output will change, and the lowpass will be a tuple.

E.g.

from pytorch_wavelets import DTCWTForward
xfm1 = DTCWTForward(J=3)
xfm2 = DTCWTForward(J=3, include_scale=True)
xfm3 = DTCWTForward(J=3, include_scale=[False, True, True])
x = torch.randn(1, 1, 64, 64)
yl, yh = xfm1(x)
print(yl.shape)
>>> torch.Size([1, 1, 16, 16])
Now do xfm2 which will give back all scales
yl, yh = xfm2(x)
for l in yl:
print(yl.shape)

>>> torch.Size([1, 1, 64, 64])
>>> torch.Size([1, 1, 32, 32])
>>> torch.Size([1, 1, 16, 16])
Now do xfm3 which will give back the last two scales
yl, yh = xfm3(x)
for l in yl:

print(yl.shape)
>>> torch.Size([0])
>>> torch.Size([1, 1, 32, 32])
>>> torch.Size([1, 1, 16, 16])

Note that to do the inverse transform, you have to give the final lowpass output. You can provide None to indicate it’s
all zeros, but you cannot provide all the intermediate lowpasses.

3.3.5 Downsampling the lowpass

Because of the dual tree nature of the DTCWT, the lowpass comes out at twice the resolution you would expect it to.
You can downsample the output by setting this parameter to true. It simply takes every second sample and is included
for convenience only.

12 Chapter 3. DTCWT in Pytorch Wavelets

CHAPTER 4

Notes on Speed

Under tests/, the profile_xfms script tests the speed of several layers of the DTCWT for working on a moderately sized
input 𝑋 ∈ R10×10×128×128. As a reference, an 11 by 11 convolution takes 2.53ms for a tensor of this size.

A single layer DTCWT using the ‘near_sym_a’ filters (lengths 5 and 7) has 6 convolutional calls. I timed them at
238us each for a total of 1.43ms. Unfortunately, there is also a bit of overhead in calculating the DTCWT, and not all
non convolutional operations are free. In addition to the 6 convolutions, there were:

• 6 move ops @ 119us = 714us

• 10 pointwise add ops @ 122us = 465us

• 12 copy ops @ 35us = 381us

• 6 different add ops @ 38us = 232us

• 6 subtraction ops @ 37us = 220us

• 3 constant division ops @ 57us = 173us

• 6 more move ops @ 28us = 171us

Making the overheads 2.3ms, and 3.7ms total time.

For a two layer DTCWT, there are now 12 convolutional ops. The second layer kernels are slightly larger (10 taps
each) so although they act over 1/4 the sample size, they take up an extra 1.1ms (2.5ms total for the 12 convs). The
overhead for non convolution operations is 4.4ms, making 6.9ms. Roughly 3 times a long as an 11 by 11 convolution.

There is an option to not calculate the highpass coefficients for the first scale, as these often have limited useful
information (see the skip_hps option). For a two scale transform, this takes the convolution run time down to 1.13ms
and the overhead down to 2.49ms, totaling 3.6ms, or roughly the same time as the 1 layer transform.

A single layer inverse transform takes: 1.43ms (conv) + 2.7ms (overhead) totaling 4.1ms, slightly longer than the
3.7ms for the forward transform.

A two layer inverse transform takes: 2.24 (conv) + 5.9 (overhead) totaling 8.1ms, again slightly longer than the 6.9ms
for the forward transform.

A single layer end to end transform takes 2.86ms (conv) + 5.8ms (overhead) = 8.6ms ≈ 3.7 (forward) + 4.1 (inverse).

13

Pytorch Wavelets Documentation, Release 0.1.1

Similarly, a two layer end to end transform takes 4.4ms (conv) + 10.4ms (overhead) = 14.8ms ≈ 6.9 (forward) + 8.1
(inverse).

If we use the near_sym_b filters for layer 1 (13 and 19 taps), the overhead doesn’t increase, but the time taken to do
each convolution unsurprisingly triples to 600us each (up from 200us for near_sym_a).

14 Chapter 4. Notes on Speed

CHAPTER 5

API Guide

5.1 Decimated WT

class pytorch_wavelets.DWTForward(J=1, wave=’db1’, mode=’zero’, separable=True)
Bases: torch.nn.modules.module.Module

Performs a 2d DWT Forward decomposition of an image

Parameters

• J (int) – Number of levels of decomposition

• wave (str or pywt.Wavelet) – Which wavelet to use. Can be a string to pass to
pywt.Wavelet constructor, can also be a pywt.Wavelet class, or can be a two tuple of array-
like objects for the analysis low and high pass filters.

• mode (str) – ‘zero’, ‘symmetric’, ‘reflect’ or ‘periodization’. The padding scheme

• separable (bool) – whether to do the filtering separably or not (the naive implementa-
tion can be faster on a gpu).

forward(x)
Forward pass of the DWT.

Parameters x (tensor) – Input of shape (𝑁,𝐶𝑖𝑛, 𝐻𝑖𝑛,𝑊𝑖𝑛)

Returns

(yl, yh) tuple of lowpass (yl) and bandpass (yh) coefficients. yh is a list of length J with the
first entry being the finest scale coefficients. yl has shape (𝑁,𝐶𝑖𝑛, 𝐻

′
𝑖𝑛,𝑊

′
𝑖𝑛) and yh has

shape 𝑙𝑖𝑠𝑡(𝑁,𝐶𝑖𝑛, 3, 𝐻
′′
𝑖𝑛,𝑊

′′
𝑖𝑛). The new dimension in yh iterates over the LH, HL and

HH coefficients.

Note: 𝐻 ′
𝑖𝑛,𝑊

′
𝑖𝑛, 𝐻

′′
𝑖𝑛,𝑊

′′
𝑖𝑛 denote the correctly downsampled shapes of the DWT pyramid.

15

Pytorch Wavelets Documentation, Release 0.1.1

class pytorch_wavelets.DWTInverse(wave=’db1’, mode=’zero’, separable=True)
Bases: torch.nn.modules.module.Module

Performs a 2d DWT Inverse reconstruction of an image

Parameters

• wave (str or pywt.Wavelet) – Which wavelet to use

• C – deprecated, will be removed in future

forward(coeffs)

Parameters coeffs (yl, yh) – tuple of lowpass and bandpass coefficients, where: yl is a
lowpass tensor of shape (𝑁,𝐶𝑖𝑛, 𝐻

′
𝑖𝑛,𝑊

′
𝑖𝑛) and yh is a list of bandpass tensors of shape

𝑙𝑖𝑠𝑡(𝑁,𝐶𝑖𝑛, 3, 𝐻
′′
𝑖𝑛,𝑊

′′
𝑖𝑛). I.e. should match the format returned by DWTForward

Returns Reconstructed input of shape (𝑁,𝐶𝑖𝑛, 𝐻𝑖𝑛,𝑊𝑖𝑛)

Note: 𝐻 ′
𝑖𝑛,𝑊

′
𝑖𝑛, 𝐻

′′
𝑖𝑛,𝑊

′′
𝑖𝑛 denote the correctly downsampled shapes of the DWT pyramid.

Note: Can have None for any of the highpass scales and will treat the values as zeros (not in an efficient
way though).

5.2 Dual Tree Complex WT

class pytorch_wavelets.DTCWTForward(biort=’near_sym_a’, qshift=’qshift_a’, J=3,
skip_hps=False, include_scale=False, downsam-
ple=False, o_dim=2, ri_dim=-1)

Bases: torch.nn.modules.module.Module

Performs a 2d DTCWT Forward decomposition of an image

Parameters

• biort (str) – One of ‘antonini’, ‘legall’, ‘near_sym_a’, ‘near_sym_b’. Specifies the first
level biorthogonal wavelet filters. Can also give a two tuple for the low and highpass filters
directly.

• qshift (str) – One of ‘qshift_06’, ‘qshift_a’, ‘qshift_b’, ‘qshift_c’, ‘qshift_d’. Specifies
the second level quarter shift filters. Can also give a 4-tuple for the low tree a, low tree b,
high tree a and high tree b filters directly.

• J (int) – Number of levels of decomposition

• skip_hps (bools) – List of bools of length J which specify whether or not to calculate
the bandpass outputs at the given scale. skip_hps[0] is for the first scale. Can be a single
bool in which case that is applied to all scales.

• include_scale (bool) – If true, return the bandpass outputs. Can also be a list of
length J specifying which lowpasses to return. I.e. if [False, True, True], the forward call
will return the second and third lowpass outputs, but discard the lowpass from the first level
transform.

• downsample (bool) – If true, subsample the output lowpass (to match the bandpass
output sizes)

16 Chapter 5. API Guide

Pytorch Wavelets Documentation, Release 0.1.1

• o_dim (int) – Which dimension to put the orientations in

• ri_dim (int) – which dimension to put the real and imaginary parts

forward(x)
Forward Dual Tree Complex Wavelet Transform

Parameters x (tensor) – Input to transform. Should be of shape (𝑁,𝐶𝑖𝑛, 𝐻𝑖𝑛,𝑊𝑖𝑛).

Returns

(yl, yh) tuple of lowpass (yl) and bandpass (yh) coefficients. If include_scale was true, yl
will be a list of lowpass coefficients, otherwise will be just the final lowpass coefficient of
shape (𝑁,𝐶𝑖𝑛, 𝐻

′
𝑖𝑛,𝑊

′
𝑖𝑛). Yh will be a list of the complex bandpass coefficients of shape

𝑙𝑖𝑠𝑡(𝑁,𝐶𝑖𝑛, 6, 𝐻
′′
𝑖𝑛,𝑊

′′
𝑖𝑛, 2), or similar shape depending on o_dim and ri_dim

Note: 𝐻 ′
𝑖𝑛,𝑊

′
𝑖𝑛, 𝐻

′′
𝑖𝑛,𝑊

′′
𝑖𝑛 are the shapes of a DTCWT pyramid.

class pytorch_wavelets.DTCWTInverse(biort=’near_sym_a’, qshift=’qshift_a’, J=3, o_dim=2,
ri_dim=-1)

Bases: torch.nn.modules.module.Module

2d DTCWT Inverse

Parameters

• biort (str) – One of ‘antonini’, ‘legall’, ‘near_sym_a’, ‘near_sym_b’. Specifies the first
level biorthogonal wavelet filters. Can also give a two tuple for the low and highpass filters
directly.

• qshift (str) – One of ‘qshift_06’, ‘qshift_a’, ‘qshift_b’, ‘qshift_c’, ‘qshift_d’. Specifies
the second level quarter shift filters. Can also give a 4-tuple for the low tree a, low tree b,
high tree a and high tree b filters directly.

• J (int) – Number of levels of decomposition.

• o_dim (int) – which dimension the orientations are in

• ri_dim (int) – which dimension to put th real and imaginary parts in

forward(coeffs)

Parameters coeffs (yl, yh) – tuple of lowpass and bandpass coefficients, where: yl is a
tensor of shape (𝑁,𝐶𝑖𝑛, 𝐻

′
𝑖𝑛,𝑊

′
𝑖𝑛) and yh is a list of the complex bandpass coefficients of

shape 𝑙𝑖𝑠𝑡(𝑁,𝐶𝑖𝑛, 6, 𝐻
′′
𝑖𝑛,𝑊

′′
𝑖𝑛, 2), or similar depending on o_dim and ri_dim

Returns Reconstructed output

Note: Can accept Nones or an empty tensor (torch.tensor([])) for the lowpass or bandpass inputs. In this
cases, an array of zeros replaces that input.

Note: 𝐻 ′
𝑖𝑛,𝑊

′
𝑖𝑛, 𝐻

′′
𝑖𝑛,𝑊

′′
𝑖𝑛 are the shapes of a DTCWT pyramid.

Note: If include_scale was true for the forward pass, you should provide only the final lowpass output
here, as normal for an inverse wavelet transform.

5.2. Dual Tree Complex WT 17

Pytorch Wavelets Documentation, Release 0.1.1

Note: Won’t work if the forward transform lowpass was downsampled.

18 Chapter 5. API Guide

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19

Pytorch Wavelets Documentation, Release 0.1.1

20 Chapter 6. Indices and tables

Bibliography

[SBK05] Ivan W. Selesnick, Richard G. Baraniuk, and Nick G. Kingsbury. The dual-tree complex wavelet transform.
Signal Processing Magazine, IEEE, 22(6):123–151, 2005. 01602.

21

Pytorch Wavelets Documentation, Release 0.1.1

22 Bibliography

Python Module Index

p
pytorch_wavelets, 16

23

Pytorch Wavelets Documentation, Release 0.1.1

24 Python Module Index

Index

D
DTCWTForward (class in pytorch_wavelets), 16
DTCWTInverse (class in pytorch_wavelets), 17
DWTForward (class in pytorch_wavelets), 15
DWTInverse (class in pytorch_wavelets), 15

F
forward() (pytorch_wavelets.DTCWTForward

method), 17
forward() (pytorch_wavelets.DTCWTInverse

method), 17
forward() (pytorch_wavelets.DWTForward method),

15
forward() (pytorch_wavelets.DWTInverse method),

16

P
pytorch_wavelets (module), 15, 16

25

	Introduction
	Installation
	Notes
	Provenance

	DWT in Pytorch Wavelets
	Differences to PyWavelets
	Example
	Other Notes

	DTCWT in Pytorch Wavelets
	Notes
	Example
	Advanced Options

	Notes on Speed
	API Guide
	Decimated WT
	Dual Tree Complex WT

	Indices and tables
	Bibliography
	Python Module Index

